In this post I derive a result that will be used in another post.
Say we have Independent and Identically Distributed (IID) Normal random variables \(X_i \sim N(\mu, \sigma^2)\), and we have
\begin{align} \bar{X} = \frac{1}{n}\sum^{n}_{i=1} X_i \end{align}
We want the distribution of \(\bar{X}\).
From a standard result, \(\bar{X}\) is also Normally distributed. Once we have the mean and variance of \(\bar{X}\), we can completely specify its distribution.
For the mean of \(\bar{X}\), note that \(E(X_i) = \mu\) we then have:
\begin{align} E(\bar{X}) = & \frac{1}{n} E\left(\sum^{n}_{i=1} X_i \right) \\ = & \frac{1}{n} \left(\sum^{n}_{i=1} E(X_i) \right) \\ = & \frac{1}{n} n\mu = \mu \end{align}
For the variance of \(\bar{X}\), we need the following identities:
\begin{align} Var(X_i) = & E(X_i^2) - E(X_i)^2 = E(X_i^2) - \mu^2 \tag{1} \\ Cov(X_i, X_j) = & E(X_i X_j) - E(X_i)E(X_j) = 0 \,\,\,\, \forall \,\,\,\, i \neq j \tag{2} \\ \implies & E(X_i X_j) = E(X_i)E(X_j) = \mu^2 \,\,\,\, \forall \,\,\,\, i \neq j \tag{3} \end{align}
Where (2) follows from the Indepenence assumption and (3) follows from the Identical Distribution assumption.
We now derive the variance of \(\bar{X}\):
\begin{align} Var(\bar{X}) = & E(\bar{X}^2) - E(\bar{X})^2 \\ = & E\left(\frac{1}{n^2}\left(\sum^{n}_{i=1} X_i \right)^2\right) - \mu^2 \\ = & E\left(\frac{1}{n^2}\left(\sum^{n}_{i=1} X_i^2 + 2\mathop{\sum\sum}_{\substack{i \ne j}} X_i X_j \right)\right) - \mu^2 \\ = & \frac{1}{n^2}\left(\sum^{n}_{i=1} E(X_i^2) + 2\mathop{\sum\sum}_{\substack{i \ne j}} E(X_i X_j) \right) - \mu^2 \tag{4} \end{align}
We know from (3) that \(E(X_i X_j) = \mu^2\), so \(\mathop{\sum\sum}_{\substack{i \ne j}} E(X_i X_j) = \mathop{\sum\sum}_{\substack{i \ne j}} \mu^2\). From a previous post, we have \(\mathop{\sum\sum}_{\substack{i \ne j}} \mu^2 = \frac{n(n-1)}{2}\mu^2\).
Also from (1) we have \(Var(X_i) = E(X_i^2) - \mu^2 \implies E(X_i^2) = Var(X_i) + \mu^2 = \sigma^2 + \mu^2\). Putting this back in (4) gives us:
\begin{align} Var(\bar{X}) = & \frac{1}{n^2}\left(\sum^{n}_{i=1} E(X_i^2) + 2\mathop{\sum\sum}_{\substack{i \ne j}} E(X_i X_j) \right) - \mu^2 \\ = & \frac{1}{n^2}\left(\sum^{n}_{i=1} (\sigma^2 + \mu^2) + 2 \frac{n(n-1)}{2}\mu^2 \right) - \mu^2 \\ = & \frac{1}{n^2}\left(n (\sigma^2 + \mu^2) + n(n-1)\mu^2 \right) - \mu^2 \\ = & \frac{1}{n^2}\left(n \sigma^2 + n^2\mu^2 \right) - \mu^2 \\ = & \frac{\sigma^2}{n} + \mu^2 - \mu^2 \\ = & \frac{\sigma^2}{n} \end{align}
Hence, we have \(\bar{X} \sim N(\mu, \sigma^2/n)\).